Additive Manufacturing

FEB 2013

Modern Machine Shop and MoldMaking Technology present ADDITIVE MANUFACTURING, a quarterly supplement reporting on the use of additive processes to manufacture functional parts. More at additivemanufacturinginsight.com.

Issue link: https://am.epubxp.com/i/104365

Contents of this Issue

Navigation

Page 12 of 19

is coming faster than it did for plastics, but it has not yet been won. The tipping point might come this year. To date, most of the company's additive metal capacity has been devoted to product development, but some of those developed products have now been committed to final manufacturing on the same additive machines. The company expects to buy more additive metal equipment to meet the growing demand. Those additive machines will probably come from Renishaw. Last year, Directed became the first U.S. commercial user of the selective laser melting machine now offered by this company (which is known for technology that relates to CNC machining). Renishaw's additive manufacturing system is open architecture, which allows users such as Directed to develop and customize machine parameters for new materials specified by their customers. Directed's managers say that this feature, and Renishaw's promise of assistance in developing parameters for new materials as needed, was a major factor in their decision to choose the machine. Then, once they had it, they say that another valuable feature proved to be the machine's 12-inch build height. Three other additive metal machines at Directed all have a maximum build height of 10 inches. The 2-inch difference might not seem like much, but the work envelope on these machines often proves to be the crucial factor that determines whether a part can be additively produced. Cost Savings Alex Fima and James Hockey are part of the technical and business development and sales staff at Directed, and Alex Ramirez manages the production floor. They say that not only is metal additive manufacturing moving from prototyping to production in the same way that plastics did, but metal additive technology is making this transition faster. The fact that plastics blazed the trail is just one of the reasons for this. Another is that the buyers of metal parts are more likely to be making an established product that faces strong pressures for cost reduction. In the right applications, additive manufacturing delivers these needed savings. Directed Manufacturing's fourth and newest additive metal manufacturing machine came from Renishaw, making the Texas company the first U.S. commercial user of this machine. Renishaw provided the images on the facing page of representative components that this machine is able to additively produce. Aircraft engines are an example, Hockey says. The potential for cost improvements within the engines' traditional production processes has largely been explored. The low-hanging fruit has been picked. Engine makers are therefore looking to non-traditional methods in the hope of significant cost savings. Potentially, additive manufacturing can provide these savings in multiple ways. One is through reduced material use and part weight. Much of the product development that Directed performs involves refining and redesigning parts to try to make them as material-efficient as possible. Parts produced through additive manufacturing can be highly intricate. They also do not have to be solid. Together, the intricacy and the option for hollowness provide opportunities for removing any and all material that is not needed for the part's performance. Another, similar advantage is the chance to optimize the part's fit and effectiveness without having to worry about how the resulting shape February 2013 — 11

Articles in this issue

Archives of this issue

view archives of Additive Manufacturing - FEB 2013